Filter Bank Common Spatial Pattern Algorithm on BCI Competition IV Datasets 2a and 2b

نویسندگان

  • Kai Keng Ang
  • Zheng Yang Chin
  • Chuanchu Wang
  • Cuntai Guan
  • Haihong Zhang
چکیده

The Common Spatial Pattern (CSP) algorithm is an effective and popular method for classifying 2-class motor imagery electroencephalogram (EEG) data, but its effectiveness depends on the subject-specific frequency band. This paper presents the Filter Bank Common Spatial Pattern (FBCSP) algorithm to optimize the subject-specific frequency band for CSP on Datasets 2a and 2b of the Brain-Computer Interface (BCI) Competition IV. Dataset 2a comprised 4 classes of 22 channels EEG data from 9 subjects, and Dataset 2b comprised 2 classes of 3 bipolar channels EEG data from 9 subjects. Multi-class extensions to FBCSP are also presented to handle the 4-class EEG data in Dataset 2a, namely, Divide-and-Conquer (DC), Pair-Wise (PW), and One-Versus-Rest (OVR) approaches. Two feature selection algorithms are also presented to select discriminative CSP features on Dataset 2b, namely, the Mutual Information-based Best Individual Feature (MIBIF) algorithm, and the Mutual Information-based Rough Set Reduction (MIRSR) algorithm. The single-trial classification accuracies were presented using 10 × 10-fold cross-validations on the training data and session-to-session transfer on the evaluation data from both datasets. Disclosure of the test data labels after the BCI Competition IV showed that the FBCSP algorithm performed relatively the best among the other submitted algorithms and yielded a mean kappa value of 0.569 and 0.600 across all subjects in Datasets 2a and 2b respectively.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Classification of EEG-based motor imagery BCI by using ECOC

AbstractAccuracy in identifying the subjects’ intentions for moving their different limbs from EEG signals is regarded as an important factor in the studies related to BCI. In fact, the complexity of motor-imagination and low amount of signal-to-noise ratio for EEG signal makes this identification as a difficult task. In order to overcome these complexities, many techniques such as variou...

متن کامل

A New Discriminative Common Spatial Pattern Method for Motor Imagery Brain-Computer Interfaces

Event-related desynchronization/synchronization patterns during right/left motor imagery (MI) are effective features for an electroencephalogram-based brain-computer interface (BCI). As MI tasks are subject-specific, selection of subject-specific discriminative frequency components play a vital role in distinguishing these patterns. This paper proposes a new discriminative filter bank (FB) comm...

متن کامل

Abstract— The Filter Bank Common Spatial Pattern (FBCSP) algorithm constructs and selects subject-specific discriminative CSP features from a filter bank of spatial- temporal filters in a motor imagery brain-computer interface

The Filter Bank Common Spatial Pattern (FBCSP) algorithm constructs and selects subject-specific discriminative CSP features from a filter bank of spatialtemporal filters in a motor imagery brain-computer interface (MI-BCI). However, information from other types of features could be extracted and combined with CSP features to enhance the classification performance. Hence this paper proposes a F...

متن کامل

Time-Constrained Filter Bank Common Spatial Pattern for Motor Imagery Brain-Computer Interfaces

One of most important tasks or key steps in the designing of an EEG-based BCI system is the optimization of spatio-temporal filters for each subject due to the poor spatial resolution of the EEG recordings, as well as the topographical arrangement and frequency specificity of brain activities. A highly popular technique for the optimization of spatial filters is Common Spatial Pattern (CSP). To...

متن کامل

EEG Based Brain Computer Interface Hand Grasp Control: Feature Extraction Method MTCSP

Brain-Computer Interfaces (BCIs) are communication systems, which enable users to send commands to computers by using brain activity only; this activity being generally measured by Electroencephalography (EEG). BCIs are generally designed according to a pattern recognition approach, i.e., by extracting features from EEG signals, and by using a classifier to identify the user’s mental state from...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2012